A study of permutation groups and coherent configurations

نویسندگان

  • Irvin Hentzel
  • Jue Yan
چکیده

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii CHAPTER 1. HISTORICAL BACKGROUND . . . . . . . . . . . . . . . . . 1 1.1 Early Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Resolvent Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 More Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.1 Galois Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.2 Additional Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 CHAPTER 2. SHARPLY 2-TRANSITIVE GROUPS . . . . . . . . . . . . . 6 2.1 Notation and Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Coset Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Characterization of Sharply 2-Transitive Permutation Groups . . . . . . . . . . 12 CHAPTER 3. COHERENT CONFIGURATIONS . . . . . . . . . . . . . . . 18 3.1 Coherent Configurations and Basis Algebras . . . . . . . . . . . . . . . . . . . . 18 3.2 Association Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Schur Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4 Construction of Non-Symmetric Commutative Association Schemes Using Schur Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.5 Permutation Representations and Centralizer Algebras . . . . . . . . . . . . . . 30 3.6 Character Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coherent configurations, association schemes and permutation groups

Coherent configurations are combinatorial objects invented for the purpose of studying finite permutation groups; every permutation group which is not doubly transitive preserves a non-trivial coherent configuration. However, symmetric coherent configurations have a much longer history, having been used in statistics under the name of association schemes. The relationship between permutation gr...

متن کامل

1 3 M ay 2 00 9 Euclidean designs and coherent configurations

The concept of spherical t-design, which is a finite subset of the unit sphere, was introduced by Delsarte-Goethals-Seidel (1977). The concept of Euclidean tdesign, which is a two step generalization of spherical design in the sense that it is a finite weighted subset of Euclidean space, by Neumaier-Seidel (1988). We first review these two concepts, as well as the concept of tight t-design, i.e...

متن کامل

Coherent configurations

In Section 2, after giving the basic definitions and some elementary consequences, we introduce two fundamental algebraic structures associated with a coherent configuration, namely, the boolean algebra of admissable relations and the adjacency ring. The action of a group on a finite set induces the structure of a coherent configuration in the set, and in this situations, which we refer to as t...

متن کامل

Primitive coherent configurations: On the order of uniprimitive permutation groups

These notes describe the author’s elementary graph theoretic proof of the nearly tight exp(4 √ n ln n) bound on the order of primitive, not doubly transitive permutation groups (Ann. Math., 1981 ). The exposition incorporates a lemma by V. N. Zemlyachenko that simplifies the proof. The central concept in the proof is primitive coherent configurations, a combinatorial relaxation of the action of...

متن کامل

Association schemes and permutation groups

A set of zero-one matrices satisfying (CC1)–(CC4) is called a coherent configuration. It is really a combinatorial object, since the conditions on the matrices can be translated into combinatorial conditions on the binary relations Oi. The coherent configuration formed by the orbital matrices of a permutation group G is the orbital configuration of G. Indeed, a coherent configuration is a parti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009